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Abstract

This paper examines high dimensional re-
gression with noise-contaminated input and
output data. Goals of such learning prob-
lems include optimal prediction with noise-
less query points and optimal system iden-
tification. As a first step, we focus on lin-
ear regression methods, since these can be
easily cast into nonlinear learning problems
with locally weighted learning approaches.
Standard linear regression algorithms gener-
ate biased regression estimates if input noise
is present and suffer numerically when the
data contains redundancy and irrelevancy.
Inspired by Factor Analysis Regression, we
develop a variational Bayesian algorithm that
is robust to ill-conditioned data, automati-
cally detects relevant features, and identifies
input and output noise – all in a computa-
tionally efficient way. We demonstrate the
effectiveness of our techniques on synthetic
data and on a system identification task for
a rigid body dynamics model of a robotic vi-
sion head. Our algorithm performs 10 to 70%
better than previously suggested methods.

1. Introduction

Learning the equations of motion of a complex phys-
ical system for the purpose of control is a common
problem in robotics. A typical system identification
approach would first collect a representative data set
from the robot by measuring positions and motor com-
mands during some explorative movements. Then, ve-
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locity and acceleration information would be obtained
by numerical differentiation of position data. The data
would also be digitally filtered to reduce noise. As a
third step, a function approximator would be applied
to learn the mapping from positions, velocities and ac-
celerations to motor commands. Such a function often
has hundreds of inputs for complex robots. Finally,
this mapping would be inserted into the control loop
of the robot, where appropriate motor commands are
predicted from desired position, velocity and accelera-
tion information – all of which are noiseless data.

The example scenario above is representative for a
large number of system identification problems. From
a machine learning point of view, the interesting com-
ponents are that the learning data is high dimensional,
has irrelevant and redundant dimensions and, despite
digital filtering, usually contains a significant amount
of noise in the inputs to the function approximator.
Moreover, predictions are required from noiseless in-
put data, since inputs generated during control origi-
nate from a planning system without noise. The qual-
ity of control strongly depends on the quality of the
learned internal model in advanced controllers and is
critical in many robotic applications such as haptic
devices, surgical robotics and safe compliant assistive
robots in human environments.

In this paper, we address the problem above in the
context of linear regression, since an extension to
nonlinear regression is straightforward using Locally
Weighted Learning methods [Atkeson et al., 1997]. If
we wanted to use traditional linear regression tech-
niques in the sample application given, we would en-
counter several deficiencies. First, algorithms like Or-
dinary Least Squares (OLS) regression do not ad-
dress noise in the input data and will result in re-
gression solutions with a persistent bias. Alternative
methods such as Total Least Squares (TLS) [Golub &
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Van Loan, 1989,Van Huffel & Vanderwalle, 1991] (oth-
erwise known as orthogonal-least squares regression
[Hollerbach & Wampler, 1996]) address input noise,
but they assume the variances of input noise and out-
put noise are the same [Rao & Principe, 2002]. In
real-world systems, this assumption is not necessarily
true and, again, the resulting estimates will be biased,
leading to inferior generalization. Additionally, for ill-
conditioned data in high dimensional spaces, most tra-
ditional linear regression techniques break down nu-
merically since they are unable to generate sparse so-
lutions identifying redundant and/or relevant dimen-
sions. Algorithms such as stepwise regression [Draper
& Smith, 1981]and LASSO (Least Absolute Shrinkage
and Selection Operator) regression [Tibshirani, 1996]
have been suggested to produce sparse solutions. Un-
fortunately, they ignore the effect of noise in input data
and require careful human supervision to ensure useful
results.

This paper is structured as follows. First, we motivate
the problem of input noise in linear regression applica-
tions and identify possible solutions. Then, we intro-
duce a novel technique that incorporates input noise
detection and uses Bayesian regularization methods to
ensure robustness to ill-conditioned data. Finally, we
evaluate our approach on synthetic data and on a 7
degree-of-freedom (DOF) robotic vision head.

2. High Dimensional Regression with

Input Noise

Let us examine some of the problems associated with
traditional linear regression methods before introduc-
ing our de-noising solution. Assuming that the input
vectors x are arranged in the rows of the matrix X and
the corresponding scalar outputs y are the coefficients
of the vector y, the general model for linear regression
with noise-contaminated input and output data can be
expressed as follows:

y =

d
X

m=1

wzmtm + εy xm = wxmtm + εxm (1)

where d is the number of input dimensions, t is
noiseless input data composed of tm components, wz

and wx are regression vectors composed of wzm and
wxm components respectively, and εy and εx are ad-
ditive mean-zero noise. Only X and y are observ-
able. Note that if the input data is noiseless (that
is, xm = wxmtm), then we obtain the familiar lin-
ear regression equation of y = βTOLSx + εy, where
βOLS,m = wzm/wxm. The slightly more general for-
mulation with the distinct coefficients wxm and wzm
used above will be useful in preparing our new algo-
rithm.

The OLS estimate of the regression vector βOLS is
(XTX)−1XTy. The first major issue with OLS re-
gression in high dimensional spaces is that the full
rank assumption of (XTX)−1 is often violated due to
underconstrained data sets. For more than 500 in-
put dimensions, the matrix inversion required in OLS
also becomes rather expensive. Ridge regression can
fix the problem of ill-conditioned matrices by intro-
ducing an uncontrolled amount of bias. There exist
also alternative methods to invert the matrix more ef-
ficiently [Strassen, 1969,Hastie & Tibshirani, 1990], as
for instance through singular value decomposition fac-
torization. Nevertheless, all these methods are unable
to model noise in input data and require manual tun-
ing of meta parameters, which can strongly influence
the quality of the estimation results.

If we examine Eq. (1), it can be shown that the OLS
estimate in the presence of noise will be βOLS,noise =
γβtrue, where 0 < γ < 1, and its exact value depends
on the amount of input noise. Thus, OLS regression
underestimates the true regression vector βtrue and
generates biased predictions, a problem that cannot
be fixed by adding more training data.

Intentionally, the input/output noise model formula-
tion in Eq. (1) was chosen such that it coincides
with a version of Factor Analysis [Massey, 1965] tai-
lored for regression problems. The intuition of this
model is given in Figure 1(a): every observed input
xim and output yi is assumed to be generated by a
set of hidden variables tim and contaminated with
some noise, exactly as given in Eq. (1). The graphi-
cal model in Figure 1(a) compactly describes the full
multi-dimensional system. The goal of learning is to
find parameters wxm and wzm, which can only be
achieved by estimating the hidden variables tim, zim
and the variances of all random variables. With this
knowledge, optimal prediction can be performed with
either noisy or noiseless inputs, by deriving the appro-
priate conditional distributions (see below). The spe-
cific version of factor analysis for regression depicted
in Figure 1(a) is called joint-space Factor Analysis or
Joint Factor Analysis (JFA), since both input and out-
put variables are actually treated in the same way dur-
ing the estimation process, i.e., only their joint distri-
bution matters. While Joint Factor Analysis is well
suited for modeling regression models with input noise,
it does not handle ill-conditioned data very well and
is computationally prohibitive in high dimensions.

In the following section, we will develop a Bayesian
treatment of Joint Factor Analysis that is robust
to ill-conditioned data, automatically detects non-
identifiable parameters, detects noise in input and out-



Bayesian Regression with Input Noise for High Dimensional Data

� � �

� � �

� �

� � � � � 	


 � � � � �
� 
 � � � �
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(b) A modified model of JFA
for efficient estimation
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(c) A Bayesian version of
JFA

Figure 1. Graphical Models for Noisy Linear Regression. Random variables are in circular nodes, observed random
variables are in double circles, and point estimated parameters are in square nodes. d is the total number of input
dimensions while N is the total number of samples in the data set.

put data and does this all in a computationally inex-
pensive manner.

3. Bayesian Parameter Estimation of

Noisy Linear Regression

Figure 1 illustrates the progression of modifications
made to the graphical model of Joint Factor Analysis
in order to derive our Bayesian version.

3.1. EM-based Joint Factor Analysis

To start with, we introduce the hidden variables zim
such that zim = wzmtim. This trick [D’Souza et al.,
2004] allows us to avoid any form of matrix inversion
in the resulting learning algorithm. Our noisy linear
regression model from Eq. (1) thus becomes:

yi =
d

X

m=1

zim + εy

zim = wzmtim, xm = wxmtm + εxm

(2)

To determine all open parameters in the con-
text of maximum likelihood estimation, we use the
Expectation-Maximization (EM) algorithm [Dempster
et al., 1977], and the following standard assump-
tions about the underlying probability distributions
are made:

yi ∼ Normal(1T
zi, ψy) zim ∼ Normal(wzmtim, ψzm)

xim ∼ Normal(wxmtim, ψxm) tim ∼ Normal(0, 1)

where 1 = [1, 1, ...1]T , zi is a d by 1 vector, wz is a
d by 1 vector composed of wzm elements, and wx, ψz

and ψx are similarly composed of wxm, ψzm and ψzm
elements, respectively. As Figure 1(b) shows, the re-
gression coefficients wzm are now behind the fan-in to
the output yi. This new formulation of Joint Factor
Analysis decouples the input dimensions and generates
a learning algorithm that operates with O(d) compu-
tational complexity per EM iteration, where d is the
number of input dimensions, instead of approximately
O(d3) as in traditional Joint Factor Analysis.

3.2. Automatic Feature Detection

The efficient maximum likelihood formulation of Joint
Factor Analysis is, however, still vulnerable to ill-
conditioned data. Thus, we introduce a Bayesian layer
on top of this model by treating the regression param-
eters wz and wx probabilistically to protect against
overfitting, as shown in Figure 1(c). To do this, we
introduce “precision” variables αm over each regres-
sion parameter wzm. The same αm is also used for
each wxm, leading to a coupled regularization of wzm
and wxm. As a result, the regression parameters are
now distributed as follows: wzm ∼ Normal(0, 1/αm)
and wxm ∼ Normal(0, 1/αm), where αm takes on a
Gamma distribution, shown below:

p(wz|α) =
d

Y

m=1

“

αm

2π

” 1

2

exp
n

−
αm

2
w

2

zm

o

p(wx|α) =
d

Y

m=1

“

αm

2π

” 1

2

exp
n

−
αm

2
w

2

xm

o

(3)

p(α) =
d

Y

m=1

b
aαm
αm

Γ(aαm)
α
(aαm−1)
m exp {−bαmαm}

The rationale of this Bayesian modeling technique is
as follows. The key quantity that determines the rel-
evance of a regression input is the parameter αm. A
priori, we assume that every wm has a mean zero dis-
tribution with broad variance 1/αm. If the posterior
value of αm turns out to be very large after all model
parameters are estimated, then the corresponding pos-
terior distribution of wzm must be sharply peaked at
zero. Thus, this gives strong evidence that wzm = 0
and that the input tm contributes no information to
the regression model. If an input tm contributes no
information to the output, then it is irrelevant to the
regression and it is also irrelevant how much it con-
tributes to xm. That is to say, the corresponding in-
puts xm could be treated as pure noise. Coupling both
wzm and wxm with the same precision variable αm ac-
complishes exactly this effect. Thus, the Bayesian ap-
proach automatically detects irrelevant input dimen-
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sions and regularizes against ill-conditioned data sets,
while detecting noise in input and output data.

Even with the Bayesian layer added, the entire regres-
sion problem can be treated as an EM-like learning
problem [Ghahramani & Beal, 2000]. Given the data

D = {xi, yi}
N

i=1, we maximize the incomplete log likeli-
hood log p(y|X) by maximizing the expected complete
log likelihood 〈log p(y,Z,T,wz ,wx, α, |X)〉, where:

log p(y,Z,T,wz,wx, α|X) = −
N

2
logψy −

1

2ψy

N
X

i=1

“

yi − 1
T
zi

”

2

−
N

2

d
X

m=1

logψzm −

d
X

m=1

1

ψzm

N
X

i=1

(zim − wzmtim)
2

−
N

2

d
X

m=1

logψxm −
d

X

m=1

1

ψxm

N
X

i=1

(xim − wxmtim)2

−
1

2

d
X

m=1

N
X

i=1

t
2

im +
1

2

d
X

m=1

logαm −
1

2

d
X

m=1

αmw
2

zm +
1

2

d
X

m=1

logαm

−
1

2

d
X

m=1

αmw
2

xm +
d

X

m=1

`

aαm0
− 1

´

logαm −
d

X

m=1

bαm0
αm

The expectation of this complete data likelihood
should be taken with respect to the true posterior dis-
tribution of all hidden variables Q(α,wz,wx,Z,T).
Unfortunately, this is an analytically intractable ex-
pression. Instead, a lower bound can be formu-
lated by using a factorial approximation of the
true posterior in terms of: Q(α,wz,wx,Z,T) =
Q(α)Q(wz)Q(wx)Q(Z,T). While losing a small
amount of accuracy, all resulting posterior distribu-
tions over hidden variables become now analytically
tractable. As a final result, we now have a mechanism
that infers the significance of each dimension’s contri-
bution to the observed output y and observed inputs
x. We omit the resulting lengthy EM update equations
for brevity and include them in the Appendix. The fi-
nal regression solution regularizes over the number of
retained inputs in the regression vector, performing a
functionality similar to Automatic Relevance Determi-
nation (ARD) [Neal, 1994]. It is important to notice
that the resulting generalized EM updates still have a

computational complexity of O(d) for each EM itera-

tion – a level of efficiency that has not been accom-
plished with previous Joint Factor Analysis models,
especially with one containing a full Bayesian treat-
ment of Joint Factor Analysis.

3.3. Inference of Regression Solution

Estimating the rather complex probabilistic Bayesian
model for Joint Factor Analysis reveals distributions
and mean values for all hidden variables. One addi-
tional step, however, is required to infer the final re-
gression parameters. For this purpose, we consider the
predictive distribution p(yq|xq) for a new noisy test in-
put xq and its unknown output yq. We can calculate

the mean of the distribution associated with p(yq|xq),
〈yq|xq〉, by conditioning yq on xq and marginalizing
out all hidden variables. We can then infer the value
of the regression estimate b̂, since 〈yq|xq〉 = b̂Txq.
Since an analytical solution of the resulting integral is
only possible for the probabilistic Joint Factor Analy-
sis model in Figure 1(b) and not for the full Bayesian
treatment, we restrict our computations to the sim-
pler probabilistic model, assuming that the results will
hold in approximation for the Bayesian model. Thus,
we obtain:

p(yq|xq
,X,Y) =

Z Z

p(yq
,Z,T|xq

,X,Y)dZdT

where X and Y are the training data. The resulting
regression estimate, given noisy inputs xq and noisy
outputs yq, is b̂noise:

b̂noise =
ψy1

T B−1

ψy − 1T B−11
Ψ

−1

z 〈Wz〉A
−1 〈Wx〉

T
Ψ

−1

x (4)

where Ψx is a diagonal matrix with the vector
ψx on its diagonal (〈Wx〉, 〈Wz〉, Ψz are sim-
ilarly defined diagonal matrices with vectors of
〈wx〉, 〈wz〉 and ψz on their diagonals, respectively),
A =

(

I +
〈

WT
xWx

〉

Ψ−1
x +

〈

WT
z Wz

〉

Ψ−1
z

)

and B =
(

11T

ψy
+ Ψ−1

z − Ψ−1
z 〈Wz〉

T
A−1 〈Wz〉Ψ

−1
z

)

. Note

that Eq. (4) is similar in form to the regression es-
timate derived for the classical model of Joint Factor
Analysis regression in Figure 1(a), which can be com-
puted, following the same procedure, to be:

b̂JF A = 〈Wz〉
“

I +
D

W
T
x Wx

E

Ψ
−1

x

”

−1

〈Wx〉
T

Ψ
−1

x (5)

The major difference between Eq. (4) and Eq.
(5) is that the former contains an additional term
〈

WT
z Wz

〉

Ψ−1
z , due to the introduction of hidden vari-

ables z. The regression estimate is scaled by an addi-
tional term as well.

Careful observation reveals that the regression vector
given by Eq. (4) is for optimal prediction from noisy

input data. However, we are interested in obtaining
the true regression vector, which is the regression vec-
tor that predicts output from noiseless inputs. Thus,
the result in Eq. (4) is not quite suitable and what
we want to calculate is the mean of p(yq|tq) where tq

are noiseless inputs. To address this, we can take the
limit of Eq. (4) by letting ψx → 0 and interpret the
resulting expression to be the true regression vector
for noiseless inputs (as ψx → 0, the amount of input
noise approaches 0). The resulting regression vector

estimate b̂true becomes:

b̂true =
ψy1

T C−1

ψy − 1T C−11
Ψ

−1

z 〈Wz〉
T 〈Wx〉

−1 (6)

where C =
(

11T

ψy
+ Ψ−1

z

)

, which is the desired regres-

sion vector estimate for noiseless data that we use in
our evaluations.
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3.4. Alternative Formulations

Several alternative graphical models can be considered
for the Bayesian approach of Figure 1(c). During our
research, we evaluated eight different variations of the
model. Two of the more interesting ones are presented
here and included in our numerical comparisons below.
In Figure 2(a), the precision variables over the regres-
sion parameters wzm and wxm are decoupled: instead
of sharing a common αm, there is a precision variable
αzm over wzm and a precision variable αxm over wxm.
This model does not enforce the interdependency be-
tween wzm and wxm as stringently as our model in
Figure 1(c). Figure 2(b) shows yet another variation
of the model, with a precision variable αm over the re-
gression parameter wzm only. In this formulation, wzm
is a point-estimated parameter. This model ignores
the effect of wx and only regularizes the wz branch.

0 1 2
3 1 2

4 1 2

5 1

6 7 8 9 9 :

; 7 8 9 9 <

= > 2= ? 2

@ > 2@ ? 2

(a) Formulation I

A B C
D B C

E B C

F B

G H I J J K

L H I J J M

N O C

P C

N Q C

(b) Formulation II

Figure 2. Graphical Models for Alternative Formulations
of the Bayesian de-noising version of JFA. Random vari-
ables are in circular nodes, observed random variables are
in double circles, and point estimated parameters are in
square nodes. d is the total number of input dimensions
while N is the total number of samples in the data set.

4. Evaluation

We applied our algorithm on both synthetic data and
robotic data for the problem of accurate prediction.
The goal of these evaluations was to determine how
much better our Bayesian de-noising algorithm fared
compared to other standard techniques in terms of
generalization performance on high dimensional, ill-
conditioned noisy data. First we evaluate our algo-
rithm on a synthetic data set. Then, to illustrate the
algorithm on a real-world application, we apply it to
a robotic vision head for the task of estimation of the
rigid body dynamics model parameters.

4.1. Synthetic Data Set

We synthesized random input training data consist-
ing of 10 relevant dimensions and 90 irrelevant and
redundant dimensions. The first 10 input dimensions
were drawn from a multi-dimensional Gaussian distri-
bution with a random covariance matrix. The output

data was generated from the relevant input data using
the ordered vector btrue = [1, 2, ..., 10]T . A signal-to-
noise ratio (SNR) of 5 was then added to the outputs.
Next, the input data was made noisy by adding Gaus-
sian noise with varying SNRs (a SNR of 2 for strongly
noisy input data and a SNR of 5 for less noisy input
data) to the relevant 10 input dimensions. A varying
number of redundant data vectors was added to the
input data, generated from random convex combina-
tions of the 10 noisy relevant data vectors. Finally, we
added irrelevant data columns until a total of 100 input
dimensions were reached, creating training input data
that contained irrelevant and redundant dimensions.
The irrelevant data was drawn from a Normal(0, 1)
distribution.

0
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0.25
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0.35
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(a) SNRx = 2, SNRy = 5

0
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0.2

0.25 r=90, u=0 r=0, u=90 r=30, u=60 r=60, u=30

Clean Noisy Clean Clean CleanNoisy Noisy Noisy

(b) SNRx = 5, SNRy = 5

Figure 3. Normalized mean squared errors on noiseless
(clean) test data and noisy test data for a 100 dimen-
sional data set with 10 relevant input dimensions and vari-
ous combinations of redundant dimensions r and irrelevant
input dimensions u, averaged over 10 trials, for different
levels of noisy data.

The test data set was created in a similar manner ex-
cept that the input data and output data were left
noise-free. A second test data set consisting of noisy
input and output data, possessing the same noise char-
acteristics as the training data set, was also generated.

We compared our Bayesian de-noising algorithm with
the following methods: OLS regression; stepwise re-
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gression [Draper & Smith, 1981], which tends to be
inconsistent in the presence of collinear inputs [Derk-
sen & Keselman, 1992]); Partial Least Squares regres-
sion (PLS) [Wold, 1975], a slightly heuristic but em-
pirically quite successful regression method for high di-
mensional data; LASSO regression [Tibshirani, 1996],
which gives sparse solutions by shrinking certain re-
gression coefficients to 0 under the control of a manu-
ally set tuning parameter; our probabilistic treatment
of Joint Factor Analysis in Figure 1(b); and the two
alternative Bayesian formulations described in Section
3.4. Figure 3 shows the generalization performances of
all the algorithms for data sets with varying redundant
dimensions r and irrelevant dimensions u, averaged
over 10 runs per condition. Our Bayesian de-noising
algorithm performs best for predictions on noiseless
data, with 10 to 70% improvement in generalization
performance for data containing an input SNR of 2
(i.e. strongly noisy data) and a smaller but still sig-
nificant improvement of 7 to 50% for less noisy data
(SNR of 5), as the small black bars show. We can see
that Joint Factor Analysis, due to the lack of regular-
ization, degrades in the presence of many redundant
dimensions, r – an effect that is emphasized on less
noisy input data (i.e. input SNR of 5 on data with
r = 90, u = 0 and r = 60, u = 30). The two alter-
native formulations of the Bayesian model also fail to
offer improved performances over input data of various
noise levels. Notice that all algorithms perform equally
badly when predicting on noisy test data. Thus, the
Bayesian de-noising algorithm is only advantageous for
applications where predictions on noiseless data are
desired.

4.2. Robotic Oculomotor Vision Head

Figure 4. Sarcos

Robotic Oculomotor

Vision Head

Next, we move on to a sample
application: a 7 DOF robotic vi-
sion head manufactured by Sar-
cos as shown in Figure 4, pos-
sessing 3 DOFs in the neck and
2 DOFs for each eye. With 11
features per DOF, this gives a to-
tal of 77 features. The kinematic
structure of robotic systems al-
ways creates non-identifiable pa-
rameters and thus, redundancies
[An et al., 1988]. For the robotic
vision head, there are 9 non-identifiable parameters if
the training set is full rank. Due to the nature of data
collection, the training set can be less than full rank
and often is, giving a high-dimensional data set that
contains redundancy. The robot is controlled at 420
Hz with a vxWorks real-time operating system running

out of a VME bus. We collected about 500,000 data
points from the robotic system while it performed sinu-
soidal movements with varying frequencies and phase
offsets in all DOFs.

The problem at hand involves parameter estimation of
the rigid body dynamics (RBD) model of the robotic
system, which consists of 11 parameters for each DOF:
one mass parameter, three center of mass parameters,
six inertial parameters (the upper triangular matrix
of the symmetric inertia matrix, relative to the center
of mass) (cf. [An et al., 1988]), and one viscous fric-
tion parameter. If the data contains no redundancy,
in theory, there is only one true solution for the RBD
parameters and no ambiguity exists. However, this
RBD system identification task is not so straightfor-
ward to resolve due to: i) noise in the input data,
ii) insufficiently rich data to allow identifiability of all
RBD parameters (i.e., the data is ill-conditioned), and
iii) the need for physical consistency constraints on the
RBD parameters. The constraints on the RBD param-
eters are given by the positive definite inertia matrices
and the parallel axis theorem and these constraints are
highly nonlinear.

To enforce the nonlinear constraints in a linear way, we
assume that the parameter vector θ is generated from
virtual parameters θ̂, as given for one DOF below:

θ1 = θ̂
2

1, θ2 = θ̂2θ̂
2

1 , θ3 = θ̂3θ̂
2

1 , θ4 = θ̂4θ̂
2

1, θ11 = θ̂
2

11

θ5 = θ̂
2

5 +
“

θ̂
2

4 + θ̂
2

3

”

θ̂
2

1

θ6 = θ̂5θ̂6 − θ̂2θ̂3θ̂
2

1, θ7 = θ̂5θ̂7 − θ̂2θ̂4θ̂
2

1

θ8 = θ̂
2

6 + θ̂
2

8 +
“

θ̂
2

2 + θ̂
2

4

”

θ̂
2

1

θ9 = θ̂6θ̂7 + θ̂8θ̂9 − θ̂3θ̂4θ̂
2

1

θ10 = θ̂
2

7 + θ̂
2

9 + θ̂
2

10 +
“

θ̂
2

2 + θ̂
2

3

”

θ̂
2

1 (7)

In essence, these virtual parameters θ̂ correspond to
the square root of the mass, the true center-of-mass
coordinates (i.e., not multiplied by the mass), the six
inertial parameters describing the inertia matrix at the
DOF’s center of gravity, and the square root of the
viscous friction coefficient. The functions in Eq. (7)
encode the parallel axis theorem and some additional
constraints, essentially ensuring that mass and viscous
friction coefficients remain strictly positive. Given the
above formulation, any arbitrary set of virtual param-
eters gives rise to a physically consistent set of actual
parameters for the RBD problem. For a robotic system
with s DOFs, Eq. (7) is repeated for each DOF. The
result is a regression vector θ with d = 11s dimensions.
All correlations between DOFs are taken into account
by means of complex basis function expansion.

Our Bayesian de-noising algorithm (as well as any
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Table 1. Root mean squared errors for position (in radians), velocity (radians/sec) and feedback command (in Newton-
meters) for ridge regression with nonlinear gradient descent, our Bayesian de-noising algorithm, LASSO regression with the
projection step, and stepwise regression with the projection step. Standard deviations were negligible and thus omitted.

Algorithm Position (rad) Velocity (rad/s) Feedback (Nm)

Ridge Regression 0.0291 0.2465 0.3969
Bayesian De-noising 0.0243 0.2189 0.3292
LASSO Regression 0.0308 0.2517 0.4274

Stepwise Regression FAILURE FAILURE FAILURE

other traditional RBD parameter estimation method)
generates the parameter vector θ, not the virtual pa-
rameters θ̂. Hence, to ensure that our final param-
eters satisfy the constraints of Eq. (7), we added a
post-processing step that projects the result of the
Bayesian algorithm onto these constraints. Again, as
in the Bayesian EM algorithm, this post-processing
step attempts to maximize the lower bound on the ex-
pected complete log likelihood, an optimization that
is performed by gradient descent with respect to the
virtual parameters θ̂. However, this is a very large
optimization problem and doing this for each EM it-
eration is computationally complex and burdensome.
Instead, we take the regularized robust solution that
the Bayesian algorithm produces and find the optimal
point-estimates of the regression vector. We do this
by holding the all variables constant except for wz

and performing an M-step via a Maximum Likelihood
approach. We use Eq. (6) to express wz in terms of

b̂true (which also happens to be θ, the regression pa-
rameters). Then, we simply substitute this expression
for wz into the lower bound of the expected complete
log likelihood. Finally, we perform gradient descent
on the virtual parameters θ̂ until they converge. The
resulting regression vector estimate θ (i.e., b̂true) pro-
duces physically consistent RBD parameters.

We compared our Bayesian algorithm with 3 other
techniques for parameter estimation on the robot data.
The first technique consisted of ridge regression using
a hand-tuned regularization parameter with nonlinear
gradient descent performed on the virtual parameters
of the system. The second algorithm was a version
of LASSO regression that had the additional step of
projecting the resulting parameter values onto the con-
straint space to produce physically consistent RBD pa-
rameters. Finally, the last algorithm was a version
of stepwise regression with the additional projection
step. All four algorithms produced physically consis-
tent RBD parameters. Note that the other algorithms
used in the synthetic data set like PLS and JFA were
not applied, since they fail to explicitly eliminate ir-
relevant input features and do not perform any form

of reasonable parameter identification.

For evaluation, we implemented a computed torque
control law on the robot, using the estimated parame-
ters from each technique. Results are quantified as the
root mean squared errors in position tracking, veloc-
ity tracking and the root mean squared feedback com-
mand. Table 1 shows these results averaged over all 7
DOFs. The standard deviations on these results were
omitted since they were so small, due to the repeata-
bility of the robotic system. The Bayesian parameter
estimation approach performed around 10 to 20% bet-
ter than the ridge regression with gradient descent ap-
proach, thus validating the effectiveness of our meth-
ods. LASSO regression performed worse than ridge
regression with gradient descent. Unsurprisingly, step-
wise regression produced RBD parameters that were
so physically off that they were impossible to run on
the robotic head. This can be explained by stepwise
regression’s failure to identify the relevant features in
the data set, resulting in RBD parameters that were
just wrong.

5. Conclusion

We derived a Bayesian linear regression algorithm that
is robust to high dimensional ill-conditioned data con-
taminated with noisy inputs and noisy outputs. The
Bayesian de-noising algorithm outperforms alternative
methods on synthetic data, with a 10 to 70% improve-
ment in generalization on noiseless data. As a sample
application, we demonstrated the efficiency of the al-
gorithm by applying it on a 7 DOF robotic head for
the task of system identification. Our algorithm suc-
cessfully identified the system parameters with 10 to
20% higher accuracy than other standard techniques.
Our suggested technique can serve as a drop-in replace-
ment for many linear regression methods and can be
inserted into nonlinear regression models that have a
linear parameterization such as locally weighted re-
gression, mixture of experts or radial basis function
networks.
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A. Appendix

We can then derive the following EM updates using stan-
dard manipulations of normal distributions:
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The covariance matrix, Σ, of the joint posterior distribu-

tion of Z and T is
h
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, where:
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and where 〈Wx〉 is a diagonal d by d matrix with 〈wx〉
along its diagonal. Similarly, 〈Wz〉, Ψx, Ψz are d by d
diagonal matrices with diagonal vectors of 〈wz〉 , ψx and
ψz. The E-step updates for Z and T are then:
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z = diag(Σzz), σ
2

t = diag(Σtt), cov(z, t) = diag(Σzt)


