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Abstract— Local linearizations are ubiquitous in the control
of robotic systems. Analytical methods, if available, can be used
to obtain the linearization, but in complex robotics systems
where the dynamics and kinematics are often not faithfully ob-
tainable, empirical linearization may be preferable. In this case,
it is important to only use data for the local linearization that
lies within a “reasonable” linear regime of the system, which can
be defined from the Hessian at the point of the linearization—
a quantity that is not available without an analytical model.
We introduce a Bayesian approach to solve statistically what
constitutes a “reasonable” local regime. We approach this
problem in the context local linear regression. In contrast to
previous locally linear methods, we avoid cross-validation or
complex statistical hypothesis testing techniques to find the
appropriate local regime. Instead, we treat the parameters of
the local regime probabilistically and use approximate Bayesian
inference for their estimation. The approach results in an
analytical set of iterative update equations that are easily
implemented on real robotics systems for real-time applications.
As in other locally weighted regressions, our algorithm also
lends itself to complete nonlinear function approximation for
learning empirical internal models. We sketch the derivation
of our Bayesian method and provide evaluations on synthetic
data and actual robot data where the analytical linearization
was known.

I. INTRODUCTION

Locally linear methods have been shown to be useful for

robot control, especially in the context of learning of internal

models of high-dimensional robotic systems for feedforward

control and for learning local linearizations for the purpose

of optimal control and reinforcement learning [1]–[3]. One

of the key problems of these methods is finding the right size

of the local region for a linearization, as in locally weighted

regression. Existing methods, such as supersmoothing [4],

locally weighted projection regression (LWPR) [3] and those

developed by Fan et al. [5], [6], to name a few, use either

cross-validation techniques or complex statistical hypothesis

testing methods and require significant manual parameter

tuning by the user for good and stable performance. Some

are only applicable for very low-dimensional data.

In this paper, we introduce a Bayesian formulation of

spatially local adaptive kernels for locally weighted regres-

sion, which automatically determines the local regime for

linearization from Bayesian statistics. Our new approach

treats all open parameters probabilistically and uses varia-

tional approximations [7] to produce an analytically tractable

Bayesian algorithm. In particular, we use the Bernoulli

distribution to model the weights generated by the locally

adaptive weighted kernel—a key detail that allows us to learn

the appropriate local regime for linearization. We evaluate

our algorithm on synthetic data sets to demonstrate its

competitiveness with other state-of-the-art nonlinear function

approximation methods like Gaussian process regression

(GPR) [8]. We also evaluate the algorithm on a direct

kinematics problem for a 7 degree-of-freedom (DOF) robotic

arm for the purpose of estimating the Jacobian matrix,

showing that it can produce results that are comparable to

the analytical Jacobian. The main purpose of this paper is to

introduce the new Bayesian treatment of local linearization

and to demonstrate its functionality. Future work will address

the application of this method in problems of reinforcement

learning and nonlinear robot control on humanoid robots.

II. LOCALLY WEIGHTED REGRESSION

For nonparametric locally weighted regression [1], let us

assume we have a data set of N training samples, D =
{xi, yi}

N

i=1
, drawn from a nonlinear function f : yi = f(xi)+

ε (where xi ∈ <d×1 is the input vector, yi is the scalar

output, ε is additive mean-zero Gaussian noise, and d is the

number of input dimensions). If we consider a local regime

of the input space around a query point xq ∈ <d×1 and

choose the locality appropriately, we can use a low order

polynomial to fit this local subset of data samples in a fast

and efficient manner. Consider the local model:

yi = bT xi + ε (1)

where b ∈ <d×1 is the regression vector, i.e., the slope of

the tangent, and ε ∼ Normal(0, σ2) is output noise with a

variance of σ2. Our goal is to approximate a locally linear

model at a query point xq in order to make the prediction

yq, where yq = bT xq.

The measure of locality for each data sample i, {xi, yi}, is

computed from a weighting kernel K, wi = K (xi,xq,h),
such that there is a scalar weight wi associated with each

sample i, according to the sample’s Euclidean distance in

input space from the query input point xq. h ∈ <+ is

a d by 1 vector that represents how wide the weighting

kernel is and dictates the quality of fit of the locally linear

model. h is a form of distance metric, a measure that



determines the size and shape of the weighting kernel. It is

the size of the local regime in input space to be linearized.

A smaller h indicates that the weighting kernel is broader.

We assume that the further a data sample is from xq in

input space, the more it should be downweighted. A popular

choice of the function K is the Gaussian kernel wi =

exp
{

−0.5 (xi − xq)
T

H (xi − xq)
}

, where H is a positive

semi-definite diagonal matrix with h on its diagonal.

The distance metric of the kernel, parameterized by h,

must be chosen carefully. If h is too large, then we risk

overfitting the data, i.e., fitting noise. If h is too small, we

may oversmooth the data, i.e., not fitting enough structure in

the data. In general, h is chosen as a function of the local

curvature of f(x) and of the data density around the query

point xq. If we can find the right distance metric value, as

a function of xq, nonlinear function approximation may be

solved accurately and efficiently. Past work has involved use

of cross-validation, statistical hypothesis testing or search

to find this optimal distance metric value. However, these

methods may be sensitive to initialization values (for gradient

descent), require manual meta-parameter tuning or be quite

computationally involved. Next, we propose a variational

Bayesian algorithm that learns both b and h simultaneously

in an Expectation-Maximization-like (EM) [9] framework.

III. BAYESIAN LOCALLY WEIGHTED REGRESSION

A. Model

Given the local model in (1), we assume that the following

prior distributions are used:

p(yi|xi) ∼ Normal
(
bT xi, σ

2
)

p(b|σ2) ∼ Normal
(
0, σ2Σb0

)

p(σ2) ∼ Scaled-Inv-χ2
(
n, σ2

N

)
(2)

where Σb0
is the prior covariance of b, and n and σ2

N are

parameters of the Scaled-inverse-χ2 distribution (n is the

number of degrees of freedom parameter and σ2
N is the scale

parameter). A Scaled-inverse-χ2 distribution was selected for

σ2 since it is the conjugate prior for the variance parameter of

a Gaussian distribution. Fig. 1 depicts the graphical model

proposed, compactly describing the full multi-dimensional

system in plate notation. The longer vertical plate shows

that there are N samples of observed {xi, yi} data, while

the wider horizontal plate shows d duplications of random

variables for the d input dimensions of the data.

We assume that each data sample i, {xi, yi}, in D has a

scalar indicator-like weight, 0 ≤ wi ≤ 1, associated with

it. If wi = 1, then the data sample is fully included in the

local linear regression problem. Otherwise, if wi = 0, then

the data sample is excluded from the regression. In contrast

to Sec. II, where the weight for each data sample wi is an

explicit function K, we treat the weights probabilistically,

defining the weight wi to be wi =
∏d

m=1
〈wim〉. wim is a

random variable representing the weight of data sample i in

the mth input dimension:

p(wim) ∼ Bernoulli

(
1

1 + |xim − xqm|rhm

)

(3)
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Fig. 1. Graphical model of Bayesian locally weighted regression in plate
notation. Random variables are in circles, observed random variables are in
double circles, and point-estimated parameters are in squares.

where xim is the mth coefficient of the sample input xi, xqm

is the mth coefficient of the query vector xq, and r > 0 is a

scalar. The weight wim is a function of the distance of the

sample i from the query point xqm in input space and the

distance metric hm, defined as:

p(hm) ∼ Gamma (ahm, bhm) (4)

where ahm and bhm are parameters of the Gamma distribu-

tion1. Modeling hm as a Gamma distribution ensures that

the inferred width of the weighting kernel remains positive.

r controls the curvature of the weighting kernel. For smaller

values of r, the weighting kernel takes on a shape with a

narrower peak, but longer tails. For our experiments, we use

r = 4 and, with this initial curvature, learn the width/distance

metric of each local weighting kernel.

B. Inference

We can treat the entire regression problem as an EM

learning problem [7], [9]. Defining X to be a matrix with

input vectors xi arranged in its rows and y as a vector with

coefficients yi, we would like to maximize the log likelihood

log p(y|X) (also known as the “incomplete” log likelihood)

for generating the observed data. Due to analytical issues,

we do not have access to the incomplete log likelihood,

but only a lower bound of it. The lower bound is based

on an expected value of the “complete” data likelihood
〈
log p(y,b,w,h, σ2|X)

〉
2, where p(y,b,w,h, σ2|X) =

∏N

i=1
p(yi,b, wi,h, σ2|xi). In our model, each yi of data

sample i has an indicator-like scalar weight wi associated

with it. We can express the complete log likelihood L as:

L =
N∑

i=1

log p(yi|xi,b, σ2)wi +
N∑

i=1

d∑

m=1

log p(wim)

+ log p(b|σ2) + log p(σ2) + log p(h)

Expanding the log p(wim) term above, we notice that there

is a problematic log (1 + (xim − xqm)
r
) term that prevents

us from deriving an analytically tractable expression for

1Note that the model in its current form does not address input data
that has irrelevant and redundant dimensions. Modifications can be made,
through the use of Automatic Relevance Determination (ARD) [10], to
introduce such an ability, but this is left to another paper. For a redundant
or irrelevant dimension m, hm should reflect this redundancy/irrelevancy
and take on a very low value.

2Note that 〈〉 denotes the expectation operator



the posterior of hm. To address this, we use a variational

approach on concave/convex functions suggested by Jaakkola

et al. [11] in order to produce analytically tractable expres-

sions. We can lower bound the term log (1 + (xim − xqm)
r
)

so that log p(wim) ≥ (1 − wim) log (xim − xqm)
r
hm −

λim (xim − xqm)
r
hm, where λim is a variational parameter

to be optimized in the M-step of our final EM-like algorithm.

The lower bound to L is then:

L̂ = −
1

2

N∑

i=1

wi log σ2 −

N∑

i=1

wi

(
yi − bT xi

)2

2σ2

+
N∑

i=1

d∑

m=1

(1 − wim) log (xim − xqm)
r
hm

−

N∑

i=1

d∑

m=1

λim (xim − xqm)
r
hm −

1

2
log σ2

+
1

2
log |Σ−1

b0
| −

bT Σ−1

b0
b

2σ2
−
(n0

2
+ 1
)

log σ2 −
n0σ

2
N0

2σ2

+

d∑

m=1

(ahm0 − 1) log hm −

d∑

m=1

bhm0hm + const

We would like to maximize the lower bound to the log

likelihood and find the corresponding parameter values. The

expectation of L̂ should be taken with respect to the true

posterior distribution of all hidden variables Q(b, σ2,h).
Since this is an analytically intractable expression, a lower

bound can be formulated using a technique from variational

calculus where we make a factorial approximation [7] of

the true posterior as follows: Q(b, σ2,h) = Q(b, σ2)Q(h).
While losing a small amount of accuracy, all resulting poste-

rior distributions over hidden variables become analytically

tractable. The posterior distributions of wim, p(wim =
1|yi,xi,θ, wi,k 6=m), are inferred using Bayes’ rule:

p(yi|xi,θ, wi,k 6=m, wim = 1)
Q

d
t=1,t6=m

〈wit〉p(wim = 1)

p(yi|xi,θ, wi1, wi2, ..., wid)

where θ =
{
b, σ2,h

}
, wi,k 6=m denotes the weights for sam-

ple i in all dimensions except for dimension m. The posterior

mean of wim is then 〈p(wim = 1|yi,xi,θ, wi,k 6=m)〉. The

final posterior EM update equations are listed below:

E-step:

Σb =

(

Σ−1

b0
+

N∑

i=1

wixix
T
i

)−1

(5)

〈b〉 = Σb

(
N∑

i=1

wiyixi

)

(6)

σ2
N =

(
∑N

i=1
wi

〈(
yi − bT xi

)2
〉

+
〈
bT Σ−1

b
b
〉

+ n0σ
2
N0

)

n0 +
∑N

i=1
wi

(7)

〈wim〉 =
qimA

Q

d
k=1,k 6=m

〈wik〉

i

qimA
Q

d
k=1,k 6=m

〈wik〉

i + 1 − qim

(8)

〈hm〉 =
ahm,0 + N −

∑N

i=1
〈wim〉

bhm,0 +
∑N

i=1
λim (xim − xqm)

r
(9)

M-step:

λim =
1

1 + (xim − xqm)
r
〈hm〉

(10)

where qim = 1/ (1 + (xim − xqm)
r
〈hm〉), and Ai =

Normal
(

yi : 〈b〉
T

xi, σ
2
N

)

. Examining (5) and (6), we see

that when the data sample i has a lower weight wi, it will

be downweighted in the regression problem3. (7) shows that

the output variance is calculated in a weighted fashion as

well. (9) reveals that the distance metric hm is a function

of the number of samples that have a low weight (i.e., are

almost excluded from the local model). Assuming the prior

distribution of the weight kernel is initialized to be broad

and wide (e.g., ahm,0 = bhm,0 = 10−8—see next paragraph

for more details), if all samples are included in the local

model, then the numerator of hm will be ahm,0, leading to a

very small hm (i.e., a wide broad kernel that encompasses all

samples) if the second term of the denominator dominates.

Note that an inversion of a d× d matrix needs to be done

in (5), and this results in (5)-(10) having a computational

complexity of O(d3) per EM iteration. To deal with problems

with very high input dimensionality, we can introduce inter-

mediate variables between the inputs and outputs, as done

in [12], in order to get fast EM update equations that are

O(d) per EM iteration. We omit this derivation due to lack

of space.

A few remarks should be made regarding the initialization

of priors used in (5)-(10). We can set the initial covariance

matrix of b to a large enough value (e.g., 106I, where I is

the identity matrix) to indicate a large enough of uncertainty

associated with the prior distribution of b. n0, the degrees of

freedom parameter, should be set to the number of samples

in the training set, and σ2
N0, the initial noise variance, can

be set to some small value (e.g., 0.1). Finally, the initial

distance metric of the weighting kernel should also be set

so that the kernel is broad and wide. For example, values

of ahm0 = bhm0 = 10−8 mean that the initial value of

hm is 1 with high uncertainty. These values can be used

if no informative prior knowledge is available. Otherwise,

if prior information is available, both parameters should be

set to reflect this. In the event that more noise is present

in the training data, the initial weighting kernel can be

made to be broader, with less uncertainty associated with

its initial bandwidth hm value. Note that some sort of initial

belief about the noise level is needed; otherwise, it will be

impossible to distinguish between noise and structure in the

training data.

IV. EXPERIMENTAL RESULTS

We evaluate our Bayesian locally weighted regression

algorithm (BLWR), first, on synthetic data sets, in order to

3To avoid computational problems resulting from division by zero, note
that during implementation, wi needs to be capped to some small non-zero
value.
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Fig. 2. 1-d function with varying curvature, shown for GPR and BLWR.
Training data has an output noise variance of 0.01 and 250 samples.

establish that its performance is competitive to other state-

of-the-art techniques for nonlinear regression such as locally

weighted projection regression (LWPR) [3] and Gaussian

process regression (GPR) [8]. Then, we demonstrate the

effectiveness of our algorithm at estimating the Jacobian

matrix in a kinematics problem for a 7 DOF robotic arm,

comparing it with results from locally weighted regression

(LWR) [3] with an optimally hand-tuned distance metric and

with the analytically derived Jacobian.

A. Synthetic Data

First, we demonstrate the locally adaptive kernel property

of our Bayesian locally weighted regression algorithm on

a data set with scalar inputs for ease of visualization and

compare it to GPR. GPR is a nonparametric technique for

nonlinear function approximation that is generally acknowl-

edged to be have excellent performance, but it is not compu-

tationally efficient for very large data sets. Since the BLWR

model presented in this paper cannot deal with redundant

and irrelevant dimensions, we use only low-dimensional

synthetic small data sets for the purpose of demonstrating

the competitive performance of BLWR to GPR on data

with these characteristics. Future evaluations will address the

application of BLWR to very large high-dimensional data

sets.

Fig. 2(a) shows the predicted output for GPR and BLWR

on the first data set (composed of 250 noisy training data

samples), which was generated from the equation y =

−2
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Fig. 3. a) Target nonlinear 2-d CROSS target function; b) Predicted function
produced by BLWR; c) Learned weighting kernels in input space, where the
small red circles indicate the test input points and centers of the weighting
kernels. Training data has an output noise variance of 0.01 and 500 samples.

x − sin3
(
2πx3

)
cos(2πx3) exp(x4), with mean-zero noise

with variance of 0.01 added to the outputs. GPR and BLWR

perform similarly when predicting the outputs from noiseless

test inputs, with GPR overfitting slightly more in the flatter

areas on the left side of the data plot, as shown in red. In

comparison, BLWR does not overfit the data in the flatter

areas in order to accommodate the high curvature on the right

side of the data plot. As Fig. 2(b) shows, it correctly adjusts

the distance metric h with the curvature of the function (with

h increasing as the curvature of the function increases) and

does not display any overfitting or oversmoothing trends.

We also evaluated BLWR on a 500-sample data set

consisting of the 2-dimensional function (CROSS), y =
max

{
exp(−10x2

1), exp(−50x2
2), 1.25 exp(−5(x2

1 + x2
2))
}

,

as previously examined in [2], [3]. Mean-zero noise with a



TABLE I

AVERAGE NORMALIZED MEAN SQUARED ERROR COMPARISONS, OVER

10 TRIALS, BETWEEN GPR, LWPR AND BLWR FOR THE NONLINEAR

2-D CROSS FUNCTION.

Algorithm nMSE std-dev

GPR 0.01991 0.00314
LWPR 0.02556 0.00416
BLWR 0.02609 0.00532

Fig. 4. Sarcos anthropomorphic arm

variance of 0.01 was added to the outputs. Fig. 3(a) shows

the target function, evaluated over a noiseless test input

(giving 1681 data points on a 41 × 41 grid in the 2 × 2
square in input space). Fig. 3(b) shows the predicted outputs

for BLWR, and Fig. 3(c) depicts the learned distance metric

values h over a subset of the test data points scattered over

the 41 × 41 grid (shown as red circles). As before, we see

that the width of the weighting kernel adjusts according

to the curvature of the function. Table. I compares the

performance of BLWR to GPR and LWPR, averaged over

10 randomly chosen training data sets. Performance was

quantified in terms of normalized mean squared prediction

error (nMSE) value on the noiseless test sets. We see that

BLWR performs competitively to LWPR, with GPR doing

slightly better.

B. Robotic Arm Data

We collected 10,800 data samples from a 7 DOF anthro-

pomorphic robotic arm made by Sarcos, as shown in Fig. 4,

while performing a trajectory tracking task in Cartesian

space. The input data, θ, consists of 7 arm joint angles,

while output data is the resulting position, p = [x y z]T ,

of the arm’s end effector in Cartesian space. For the purpose

of establishing that BLWR does the right thing for each local

regression problem, we would like to solve the kinematics

problem, p = f(θ), in order to find the Jacobian J for a

local linearization problem, as defined below:

∂p

∂t
=

∂f

∂θ
︸︷︷︸

J

∂θ

∂t

We compare the estimated Jacobian values to the analytically

computed Jacobian JA for a particular local linearization

problem, given a query input vector of joint angles: [0
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Fig. 5. Analytically derived versus inferred values of the Jacobian matrix,
shown for each of the 3 rows of the matrix (corresponding to the x, y and
z positions of the robotic arm’s end effector).

−0.3 0 1.57 0 0 0]T . Since locally weighted regression

(LWR) with cross-validation (to find the optimal distance

metric) on a 7-dimensional data set would be computation-

ally prohibitive, we instead choose to compare our Bayesian

algorithm with LWR where the distance metric is manually

hand-tuned to be optimal. We run LWR using a range of

distance metric values where, for simplicity, the weighting

kernel had a homogeneous (i.e., the same) width in all

dimensions of the input space. We explored a wide range

of different distance metric values (∼ 100 − 200 values)

for LWR—a painstaking procedure—and report results from

a representative set of these values. We can visualize the

coefficients of the 3 × 7 Jacobian matrix using bar plots,



TABLE II

ANGULAR AND MAGNITUDE DIFFERENCE BETWEEN THE ANALYTICAL

JACOBIAN JA AND THE INFERRED JACOBIAN OF BLWR, JB . Ji IS THE

iTH ROW OF J , AND |JA,i| IS THE MAGNITUDE OF THE iTH ROW OF JA .

Ji
6 JA,i − 6 JB,i abs

`

|JA,i| − |JB,i|
´

|JA,i| |JB,i|

J1 19 degrees 0.1129 0.5280 0.6464
J2 79 degrees 0.2353 0.2780 0.0427
J3 25 degrees 0.1071 0.4687 0.5758

TABLE III

ANGULAR AND MAGNITUDE DIFFERENCE BETWEEN THE ANALYTICAL

JACOBIAN JA AND THE INFERRED JACOBIAN OF LWR, JL (WITH A

MANUALLY TUNED OPTIMAL DISTANCE METRIC OF D = 0.1).

Ji
6 JA,i − 6 JL,i abs

`

|JA,i| − |JL,i|
´

|JA,i| |JL,i|

J1 16 degrees 0.1182 0.5280 0.6411
J2 85 degrees 0.2047 0.2780 0.0734
J3 27 degrees 0.1216 0.4687 0.5903

shown in Figs. 5(a)-5(c). Each bar plot shows the coefficients

of a row of J , where J = [J1 J2 J3]
T , and compares the

inferred coefficient values from BLWR and LWR. Of all the

distance metric values we experimented with for LWR, a

distance metric value of 0.1 appeared to be most suitable

for this particular linearization problem, as the bar plots

show. Notice that the coefficients for JA,2 are particularly

small, as seen in Fig 5(b). This can be explained by the

lack of exploration and movement by the robotic arm in the

y-coordinate of Cartesian space while the training data was

collected.

To evaluate the difference between the coefficients of the

analytical Jacobian JA and the coefficients of the inferred

Jacobian by BLWR and LWR (denoted by JB and JL,

respectively), we calculate the angle between the analytical

and inferred row vectors of the Jacobian matrix. Tables II-

III report this angular difference, as well as the magnitude

difference between vectors and the individual magnitudes of

each vector. We observe that, in general, BLWR and LWR

with an optimally hand-tuned distance metric perform simi-

larly, with angular differences ranging from 16 to 30 degrees

with the analytical Jacobian row vectors. Notice that the

angular differences for J2 are particularly large and that the

magnitudes of BLWR’s and LWR’s inferred row vectors are

rather small (0.0427 and 0.0734, respectively, compared to

0.2780 for the second row vector of the analytical Jacobian).

The large J2 angular difference for BLWR and LWR is not

particularly worrisome, given the relatively small magnitudes

of all row vectors JA,2, JB,2 and JL,2. As such, the large

angular difference for J2 can be explained and discounted

in the evaluation of BLWR and LWR algorithms. Note that

the condition number associated with the input data is a very

large 105, indicating that the problem is ill-conditioned and

not as easy to solve as it may appear.

In this robotic experiment, we see the advantages of-

fered by our Bayesian locally weighted algorithm. BLWR

performed as well as LWR with an optimally hand-tuned

distance metric, but without the need for any meta-parameter

tuning, cross-validation or involved hypothesis testing.

V. CONCLUSIONS

We introduced a Bayesian formulation of spatially lo-

cal adaptive kernels for locally weighted regression. Our

approach treats all open parameters probabilistically and

learns the appropriate local regime for each linearization

problem. We present experimental results on synthetic low-

dimensional data, showing competitiveness with Gaussian

process regression, a state-of-the-art nonparametric nonlin-

ear function approximation method. On a 7-dimensional

linearization problem for a robotic arm, we demonstrate

that our Bayesian algorithm performs just as well as a

locally weighted algorithm where the distance metric is

hand-tuned to be optimal. However, our algorithm does not

require the painstaking and time-consuming process of cross-

validating or hypothesis testing. Future work will address the

application of this Bayesian locally linear algorithm to high-

dimensional function approximation where the input data

contains numerous redundant and irrelevant dimensions—a

common scenario in problems of reinforcement learning and

nonlinear humanoid robot control.
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